2017 MATHEMATICS

Tota	l marks : 80			Time: 3 hours	
Gen	eral Instructions:				
i)		5 minutes is allott	ed to read the question	paper and revise	
ii)		per consists of 22 σ	nuestions.		
iii)	All questions are				
iv)	•	<u> </u>	in some questions.		
v)	Marks allocated	to every question	are indicated against i	t.	
<i>N.B</i> :	Check that all pag left side.	es of the question	paper is complete as i	ndicated on the top	
		SECT	TION - A		
1.	Choose the corr	rect answer from	the given alternatives	5.	
	(a) If α and β are	e the zeros of $3x^2$	+2x-5 then the value	of αβ is	1
	(i) $\frac{2}{3}$	(ii) $-\frac{2}{3}$	(iii) $\frac{5}{3}$	(iv) $-\frac{5}{3}$	
	(b) The pair of ed (i) parallel	quations $x = l$ and	y = m represent lines w (ii) coincident	which are	1
	(iii) intersecti	ng at (l, m)	(iv) parallel to	c-axis	
	(c) The nature of (i) real and e (iii) not real a	equal	equation $4x^2 + 4\sqrt{3}x + 3$ (ii) real and dis (iv) not real and	tinct	1
	(d) Which term (i) 8 th	of the A.P. 72, 63, (ii) 9 th	54, is 0? (iii) 10 th	(iv) 11 th	1
	(e) In the right Δ	ABC right angled a	at B, the value of cos(A	+C) is	1
	(i) 1	(ii) $\frac{1}{2}$	(iii) $\frac{1}{\sqrt{2}}$	(iv) 0	
	(f) The midpoint (i) $(a+b, b)$		(b-a, 2b-a) and $(b-a, a+b)$	3a) is (iv) (a, b)	1
	(g) The angle be (i) 0°	etween the tangent (ii) 45°	and the radius at the po	oint of contact is (iv) 180°	1

	a
_	/-

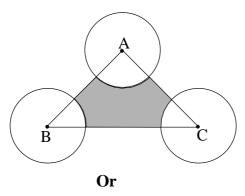
	(h) Th	e sum of the l	ength of arcs of tw	o quadrants of a c	circle of radius r is	1
	(i)	πr	(ii) $2\pi r$	(iii) πr^2	(iv) $\frac{1}{2}\pi r$	
	the	the volumes of the radii will be 343:27	*	(iii) 7:3	3: 27, then the ratio of (iv) 3:7	1
	•	a throw of a $\frac{1}{3}$	lie, what is the problem (ii) $\frac{1}{2}$	coability of getting a (iii) $\frac{2}{3}$	a prime number?	1
			Section –	В		
2.	Use E	uclid's Divisio	n Algorithm to find	the HCF of 405 a	and 2520.	2
3.	For w		k does the quad	ratic equation 9.	$x^2 + 8kx + 16 = 0$ have	2
4.	Find k	if the points ((0, k), $(1, 2)$ and (-1)	2, –1) are collinea	r.	2
5.	Given that $\triangle ABC \sim \triangle PQR$, if $AB = 14$ cm, area of $\triangle ABC = 196$ cm ² and area of $\triangle PQR = 529$ cm ² , then find PQ.					
6.		heel rotates :		a distance of 22	200 m, find the radius of	f 2
			Section –	C		
7.		•	tic polynomial whethe zeros and the c		and -5 and verify the	3
	b. If 1	is a zero of th	ne polynomial $7x -$	$-x^3 - 6$, find its of	ther zeros.	
8.		$\frac{1}{a+b+x} =$ we the following	ag quadratic equation $\frac{1}{a} + \frac{1}{b} + \frac{1}{x}; \text{ wh}$ Or ag system of equation $y = 10,$ $y = 1$	ere $a \neq 0, b \neq 0, x$	$x \neq 0$	3

-3- *NB-T/M*

9. **a.** Find the 25th term of an A.P. whose 9th term is -6 and common difference is $\frac{5}{4}$

b. The first and the last terms of an A.P. are 8 and 350 respectively. If its common difference is 9, how many terms are there and what is their sum?

10. If 7 sec
$$\theta = 25$$
, evaluate $\frac{1 - \sin^2 \theta}{1 - \cos^2 \theta}$ with the help of a right triangle.


11. **a.** The shadow of a vertical tower on a level ground increases by 10 m when the altitude of the sun changes from 45° to 30°. Find the height of the tower. [Use $\sqrt{3} = 1.73$]

3

3

b. Evaluate
$$\frac{\sec^2 54^\circ - \cot^2 36^\circ}{\cos \sec^2 57^\circ - \tan^2 33^\circ} + 2\sin^2 38^\circ \sec^2 52^\circ - \sin^2 45^\circ$$

- 12. A(x, 7), B(-2, -1) and C(8, -1) be the vertices of $\triangle ABC$. $AD \perp BC$ and D divides BC in the ratio 3:7. If the length of AD is 8 units, find the coordinates of A.
- 13. Draw a $\triangle ABC$ in which AB = 5 cm, BC = 6 cm and AC = 7.5 cm. Construct a $\triangle AB'C'$ similar to $\triangle ABC$ with scale factor 5:7. (Traces of construction only is required.)
- 14. **a.** In the adjoining figure, ABC is an equilateral triangle of side 21 cm. Three circles of equal radii 7 cm are drawn on its three vertices. Find the area of the shaded region. [Use $\sqrt{3} = 1.73$]

b. The surface area of a solid sphere is 9856 cm². The sphere is melted and recast into a cone of height 112 cm. Find the radius of the base of the cone so formed.

3

3

15. Calculate the median for the following frequency distribution

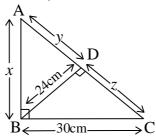
Class	0-10	10-20	20-30	30-40	40-50	50-60
Frequency	3	6	8	15	10	8

16. Cards marked with 13, 14, 15, ..., 60 are placed in a box and mixed thoroughly. One card is drawn at random from the box. Find the probability that the number on the drawn card is: (i) divisible by 5, (ii) a perfect square.

Section - D

17. **a.** John scored 40 marks in a test, getting 3 marks for each correct answer and losing 1 mark for each wrong answer. Had 4 marks been awarded for each correct answer and 2 marks been deducted for each wrong answer, then John would have scored 50 marks. How many questions were there in the test? Solve by forming simultaneous linear equations.

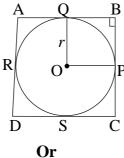
Or 5

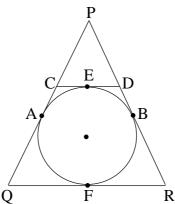

- **b.** A passenger train takes 2 hours less for a journey of 300 km if its speed is increased by 5 km/hr from its usual speed. Find the usual speed of the train. Solve by forming quadratic equations.
- 18. **a.** An aeroplane flying horizontally at a height of 2500 m above the ground is observed at an elevation of 60°. After 15 seconds, the elevation is observed to be 30°. Find the speed of the aeroplane in km/hr. [Use $\sqrt{3} = 1.73$]

Or 5

- **b.** Two poles of equal heights are standing opposite each other on either side of the road, which is 80 m wide. From a point between them on the road, the angles of elevation of the top of the poles are 60° and 30° respectively. Find the height of each pole and the distances of the point from the poles. [Use $\sqrt{3} = 1.73$]
- 19. **a.** State and prove Pythagoras theorem.

Or 5


b. In the adjoining figure, find x, y and z.


-5-

5

20. **a.** In the figure given below, a circle is inscribed in a quadrilateral ABCD in which $\angle B = 90^{\circ}$. If AD = 23 cm, AB = 29 cm and DS = 5 cm, find the radius of the circle.

b. In the figure given below, a circle is inscribed in ΔPQR touching the sides PQ, QR and PR at A, F and B respectively. CD is a tangent to the circle at E and bisects the sides PQ and PR at C and D respectively. Prove that perimeter of the quadrilateral CQRD is three times of the base QR of the triangle.

21. **a.** A chord of length $35\sqrt{2}$ cm is drawn in a circle of diameter 70 cm. Find the area of the minor and major segments of the circle.

Or 5

- **b.** An oil funnel consists of a 7 cm long cylindrical portion attached to a frustrum of a cone. If the perimeters of the top and bottom of the funnel are 20π cm & 8π cm and the total height is 15 cm, find the total outer surface area of the funnel.
- 22. **a.** Construct a 'less than ogive' for the following frequency distribution:

Capital								
(in `lakhs)	0-10	10-20	20-30	30-40	40-50	50-60	60-70	70-80
No. of								
companies	2	3	7	11	15	7	2	3

-6- *NB-T/M*

Or 5

b. The mean of the following frequency distribution is 62.8 and the sum of all frequencies is 50. Find the missing frequencies f_1 and f_2 using step-deviation method, taking assumed mean = 50.

Class	0-20	20-40	40-60	60-80	80-100	100-120
Frequency	5	f_1	10	f_2	7	8
