Total number of printed pages : 6

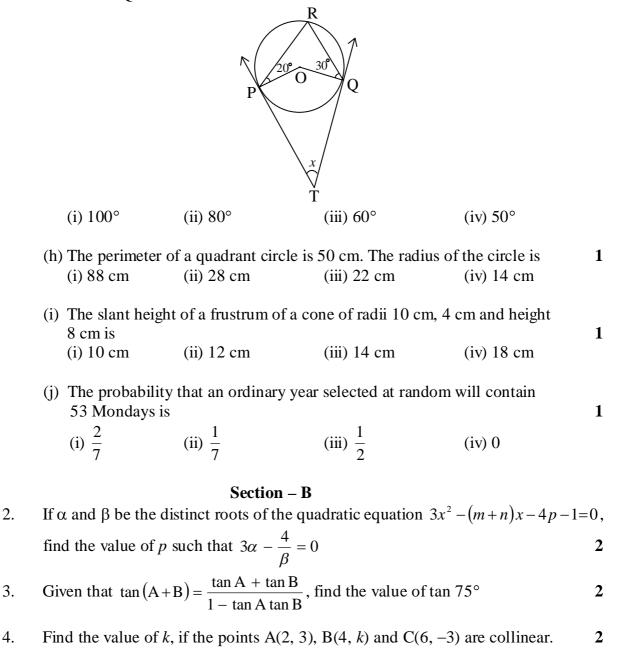
2016 **MATHEMATICS**

Total marks: 80

1.

General Instructions:

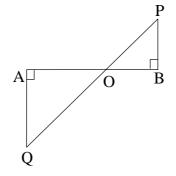
- Approximately 15 minutes is allotted to read the question paper and revise the i) answers.
- The question paper consists of 22 questions. ii)
- All questions are compulsory. iii)
- Internal choice has been provided in some questions. iv)
- Marks allocated to every question are indicated against it. v)
- N.B: Check that all pages of the question paper is complete as indicated on the top left side.


С	hoose the correc	et answer fron	n the given alternatives.		
(a			zeros 2 and –3 can be wr	itten as	1
	(i) $x^2 + 2x - 3$		(ii) $x^2 - 3x - 6$		
	(iii) $x^2 + x - 6$		(iv) $x^2 - x + 6$		
(b) In the linear eq	uation $ax + by =$	$=c$, if $a \neq 0$, $b = 0$ and $c = 0$	0, then the graph of	
	this equation is				1
	(i) the y-axis		(ii) the <i>x</i> -axis		
	(iii) a line paral	lel to x-axis	(iv) a line parallel to y-a	ixis	
(c) The discriminar	nt of the quadra	atic equation $2x + \frac{4}{x} = 9$	is	1
	(i)113	(ii) 49	(iii) 0	(iv) –113	
(d	1) The n^{th} term of	the A.P. 6, 10,	14. 18 is		1
(·		(iii) $4n - 2$	(iv) $4n + 2$	-
(e) In the right ΔA	BC right angled	l at B, cosec A is equal to)	1
	AB	BC	AC	AC	
	(i) $\frac{AB}{AC}$	(ii) \overline{AC}	(iii) $\frac{AC}{BC}$	(iv) $\frac{AC}{AB}$	
(f) The difference	between the ab	scissa and the ordinate o	f two points in a	
	plane are 2 <i>a</i> an	d 2b respective	ely. The distance betweer	these two points is	1
	(i) $\sqrt{a^2 + b^2}$	(ii) $2\sqrt{a^2+b^2}$	$(iii) 4a^2 + 4b^2$	(iv) $a^2 + b^2$	

SECTION - A

Time : 3 hours

1


(g) TP and TQ are tangents to the adjoining circle with centre O. $\angle RPO = 20^{\circ}$ and $\angle RQO = 30^{\circ}$. Then the value of x is

2

3

5. In the figure given below, QA and PB are perpendicular to AB. If AO = 10 cm, BO = 6 cm and PB = 9 cm, then find the value of AQ.

6. The circumference of a circle is 220 cm. Find the area of the sector of that circle whose central angle is 36° 2

Section – C

- 7. **a.** If α , β are the zeros of the quadratic polynomial $x^2 9$, form the quadratic polynomial whose zeros are $\frac{3\alpha}{\beta}$ and $\frac{3\beta}{\alpha}$
 - Or

b. Determine whether the quadratic equation $\frac{3}{4}x^2 - 8x + 3 = 0$ has real roots and if so, find the roots by using quadratic formula.

8. Solve the following system of linear equation by cross-multiplication method:

$$\frac{5}{x-1} + \frac{1}{y-2} = 2$$

$$\frac{6}{x-1} - \frac{3}{y-2} = 1$$
3

- The last term of an A.P. is 120. It's first term and common difference are 20 and 5 respectively. Find the sum of the A.P.
 3
- 10. If $\tan \theta = \frac{2mn}{m^2 n^2}$, find the values of $\sin \theta$ and $\sec \theta$ with respect to the sides of a right-angled triangle. 3

3

3

3

3

11. **a.** Prove that
$$(1 + \cot^2 \theta) + (1 + \frac{1}{\cot^2 \theta}) = \frac{1}{\sin^2 \theta - \sin^4 \theta}$$

Or

b. Prove that
$$\cos(40^\circ - \theta) - \sin(50^\circ + \theta) + \frac{\cos^2 40^\circ + \cos^2 50^\circ}{\sin^2 40^\circ + \sin^2 50^\circ} = 1$$

-4-

- 12. **a.** A boy is standing on the deck of an anchored ship which is 15 m above the sea level. He observes that the angle of elevation of the top of a hill as 60° and the angle of depression of the base of the hill as 30°. Calculate the distance of the base of the hill from the ship and also the height of the hill. [Use $\sqrt{3} = 1.732$] Or 3
 - **b.** A pole 5 m high is fixed on the top of a tower. From a point A on the ground, the angle of elevation of the top of the pole is 60° and from the top of the tower, the angle of depression of the point A is 45°. Find the height of the tower. [Use $\sqrt{3} = 1.732$]
- 13. Draw a line AB of length 9 cm. Taking A as centre, draw a circle of radius 4 cm and taking B as centre, draw another circle of radius 3 cm. Construct tangents to each circle from the centre of the other circle. (Traces of construction only is required.)
- 14. **a.** Two circles touch internally. The sum of their areas is 116π cm² and the distance between their centres is 6 cm. Find the radii of the circles.

Or

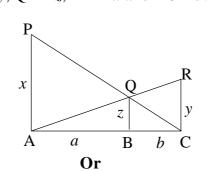
- b. A horse is tethered at one corner of a squared-shaped grass field of side 21 m by means of a 7 m long rope. Find:
 - (i) the area it can graze,
 - (ii) the ungrazed area if the rope were 14 m long.
- 15. Find the median of the weights of 30 students of a class.

Weight (in kg)	40-45	45-50	50-55	55-60	60-65	65-70	70-75
No. of students	2	3	8	6	6	3	2

16. **a.** A box contains 8 dozen oranges out of which 8 are rotten. An orange is selected at random. Find the probability of getting:

(i) a good orange,

(ii) a rotten orange


- **b.** Two dice are rolled simultaneously. Find the probability of getting:
 - (i) a sum greater than 7,
 - (ii) same number on both dice.

Section – D

17. **a.** Draw the graphs of the equations x - y + 1 = 0 and 3x + 2y - 12 = 0. Determine the coordinates of the vertices of the triangle formed by these lines and the *x*-axis.

Or

- **b.** The area of a rectangle gets reduced by 9 square units if its length is reduced by 5 units and the breadth is increased by 3 units. If we increase the length by 3 units and the breadth by 2 units, the area is increased by 67 square units. Find the length and breadth of the rectangle.
- 18. a. The points A(0, -1), B(-2, 3), C(6, 7) and D(8, 3) are the vertices of a quadrilateral. Identify the name of the quadrilateral ABCD with reasons.
 Or
 - **b.** The line segment joining the points P(3, 3) and Q(6, -6) is trisected at the points A and B such that A is nearer to P. If A also lies on the line given by 2x + y + k = 0, find the value of k.
- 19. **a.** In the adjoining figure, PA, QB and RC each is perpendicular to AC such that PA = x, RC = y, QB = z, AB = a and BC = b. Prove that: $\frac{1}{x} + \frac{1}{y} = \frac{1}{z}$

- **b.** State and prove Thales theorem.
- 20. **a.** Angle between two tangents PQ and PR from a point P to a circle with centre O is right angle. If PQ + PR = 8 cm, find the diameter of the circle. Or 5
 - **b.** Prove that the opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.

5

5

5

21. **a.** A solid is composed of a cylinder with hemispherical ends. The total height of the solid is 19 cm and the diameter of the cylinder is 7 cm. Find the volume and the surface area of the solid.

-6-

- **b.** A semi-circular metal sheet of diameter 28 cm is bent into an open conical cup. Find the capacity of the cup. [Use $\sqrt{147} = 12.12$]
- 22. **a.** Find the mean of the following data using Step-deviation method:

Or

Marks obtained	No. of students
Less than 30	6
Less than 40	24
Less than 50	49
Less than 60	71
Less than 70	88
Less than 80	100

[Take assumed mean = 45]

b. The total sales contributed by different counters in a departmental store during a month was:

Counter	Sale (`)
Electrical	3,50,000
Hardware	2,50,000
Men's wear	2,00,000
Ladies wear	3,00,000
Toys	1,00,000

Represent this information in a pie-chart by rounding-off the values (not on graph paper). Also shade and label the different sectors.

5

5