SCHOOL OF ENGINEERING AND TECHNOLOGY D.C. COURT JUNCTION, DIMAPUR END-TERM EXAMINATIONS, DEC 2022

Course Code:	G1T01	Semester:	11	Total:	60 Marks			
Course Name:	Engineer	ing Mathematic	s-1	Time:	1 3 hrs			
Write only the quest		PART-			10-1-10			
Inswer the follow				n en renter	$10 \times 1 = 10$			
. The determinant	of an Ident	tity matrix of or	der 10	is:				
(a) 10		(四) 1		DIMAPUR LIBRARY Hill View Cc'ony Dimapur : Nagalanu				
(c) 1/10		(d) 9						
. The eigen value	s of the ma	$\operatorname{trix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 8 \end{bmatrix}$	s:					
(a) 1,2,4 (c) 2,4,8		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(b) 2,2,2 (d) no eigen values					
3. Which of these	convergen	e tests are for a	lternatio	ng series?				
(a) Limit Con	parison tes	t (b) d'/	lember	rt's Ratio tes	st			
(c) Leibnitz test (d) Cauchy				's Integral test				
4. If the series Σ	un is conve	rgent then:						
(a) $\lim_{n \to \infty} u_n = \infty$			(b) $\lim_{n \to \infty} u_n = 1$					
(c) $\lim_{n \to \infty} u_n =$	finite		$ (d) \lim_{n \to \infty} u_n = 0 $					
5. The radius and	center of c				$^{2} = 25$ is:			
(a) 25, (0,0)		(b) 5,	(b) 5, (2,0)					
(c) 25, (-2,0			(d) 5, (-2,0)					
6. Which of the fe	ollowing do	es not have a de	fined ra	dius of curv	/ature?			
(a) $y = x^2$ with $y = 2x$								
(c) $y = x^2 +$	2	(d) y	$=x^3$					
7. $\frac{\partial^2}{\partial x \partial y}(x^2 y +$	y ² x) equa	ls:						
(a) $x + y$	1000	(b) $x^2 + y^2$						
$(c)^{2x+2y}$		(d) 2:	ry					

111

2

A

8. Which of the following functions does not have a third derivative?

(a) $y = x^5 + 5$	(b) $y = x^4 + 4$	
(c) $y = x^3 + 3$	(d) $y = x^2 + 2$	
9. $\int_1^3 \int_2^4 dx dy$ is equal to:		
(a) 4 sq units	(b) 3 sq units	-
(c) 2 sq units	(d) 1 sq units	D
10. $\int_1^3 \int_0^3 \int_2^5 dx dy dz$ is the same	ie as:	D

DIMAPUR LIBRARY Hill View Cc'on/ Dimapur : Nagaland

(a)
$$\int_1^3 \int_2^5 \int_0^3 dy dx dz$$

(c) $\int_1^3 \int_2^5 \int_0^3 dy dx dz$

(b) $\int_{1}^{3} \int_{0}^{3} \int_{2}^{5} dy dz dx$ (d) $\int_{1}^{3} \int_{0}^{3} \int_{2}^{5} dx dz dy$

PART-B

Answer any five questions.

 $5 \times 4 = 20$

[11. Find the rank of the given matrix A by reducing it to Echelon form.

A =	r1	2	4	01
	2	5	3	2
	3	2	4	1
	12	2524	4348	0210

12. Using Cayley-Hamilton theorem find the inverse of A.

$$\mathbf{A} = \begin{bmatrix} 1 & 3 & 2 \\ 1 & 3 & -3 \\ -2 & -5 & 2 \end{bmatrix}$$

13. Test the convergence of the following alternating series:

(i)
$$\sum (-1)^{n-1} \frac{1}{n\sqrt{n}}$$

(ii) $\sum (-1)^{n-1} \frac{1}{n^2}$

14. Find the center of curvature of the curve $y = x + \frac{9}{x}$ at (3, 6).

15. Discuss the convergence of the given series using Limit Comparison Test

$$\sum \frac{1}{n^2(n+1)}$$

It. Using double integrals find the area of the region bounded by the x axis. y axis and the line x + y = 1

17 Evaluate the given integral:

$$\int_{1}^{3} \int_{2}^{3} \int_{0}^{y} (x^{2} + y^{2} + z^{2}) dx dy dz$$

PART-C

Answer any four questions

$4 \ge 7.5 = 30$

DIMAPUR LIBRARY Hill View Gclon/ Dimapur : Nagaland

18. Find the eigen values and vectors of the given matrix

$$A = \begin{bmatrix} 5 & 7 & -5 \\ 0 & 4 & -1 \\ 2 & 8 & -3 \end{bmatrix}$$

19. Test the convergence of the given series using d'Alembert's Ratio Test.

$$\sum \frac{x^n}{n^2+1}$$

20. If ρ_1 and ρ_2 be the radii of curvature of an ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ at the two extremities (a,0) and (0,b) prove that $\left[(\rho_1)^{\frac{2}{3}} + (\rho_2)^{\frac{2}{3}}\right](ab)^{\frac{2}{3}} = a^2 + b^2$

21. If $u = \tan^{-1}\left(\frac{y^2}{x}\right)$ show that: $x^2 \frac{d^2 u}{dx^2} + 2xy \frac{d^2 u}{dxdy} + y^2 \frac{d^2 u}{dy^2} = \frac{\sin 2u}{2} (\cos 2u - 1)$

22. Using Leibnitz theorem show that if $y = \sin(msin^{-1}x)$ then

$$(1-x^2)y_{n+2} - (2n+1)xy_{n+1} - (n^2 - m^2)y_n = 0$$

23. Evaluate $\iint (x^2y + xy^2) dx dy$ over the region bounded by the curves y = x and $y = x^2$.